

International Chemistry Online Olympiad

Contest 1: Christmas 2013

December 21 to 28, 2013

Thanks to the following individuals.

Problem Contributors

David Huang Ahaan Rungta Runpeng Liu Sayan Mukherjee

Proofreader Jeremy Dalcin

Documenting Ahaan Rungta, Evan Chen

Instructions

Enclosed are 15 multiple-choice questions and 3 free-response questions. For the multiple-choice questions, respond with the letter of the correct choice. Explanations are not required. For the free-response questions, type up your full solutions. Submit your response via the provided form or to

iChOOContest@gmail.com

with your full name, member code, age and grade. For each multiple-choice question, a correct answer will earn you 3 points, an incorrect answer will be penalized by 1 point, and leaving it unanswered will give you 0 points. For each free-response question, depending on your steps and correctness of your work, you will get a score between 0 and 10 points, inclusive. Thus, the maximum possible score is 75. The top 3 will receive IChOO T-shirts, courtesy of Brilliant.org.

Although you have a week for this, you should be able to complete this entire set within 2 hours. Plus, it's holiday season so relax and have fun; happy holidays! Note that the next two pages contain useful information you may need on the contest. Further information should not be looked up.

Periodic Table of Elements

hydro 1		ā		751	650	151	ē	1151	ē	15	5.5	616.	100	#EX.	545	(8.5)	5.0	60	helium 2 He
1.00 lithi		beryllium											i	boron	carbon	nitrogen	oxygen	fluorine	4.0026 neon
3		4												5	6	7	8	9	10
L	i l	Be												В	C	N	0	F	Ne
6.9		9.0122												10.811	12.011	14.007	15,999	18.998	20,180
sodi	um I	magnesium												aluminium	silicon	phosphorus	sulfur	chlorine	argon
1		12												13	14	15	16	17	18
N	a	Mg												ΑI	Si	Р	S	CI	Ar
22.9	990	24.305												26.982	28.086	30.974	32.065	35.453	39,948
potas 1		calcium 20		scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	iron 26	cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
		_										_				-			
K		Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.0		40.078		44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63,546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
rubio		strontium 38		yttrium 39	zirconium 40	niobium 41	molybdenum 42	technetium 43	ruthenium 44	rhodium 45	palladium 46	silver 47	cadmium 48	indium 49	tin 50	antimony 51	tellurium 52	iodine 53	xenon 54
		2-53200		V				30 75	A. 1922			-			1000000	950.55550	1000	J.J	
R	D	Sr		Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
85.4		87.62		88.906	91.224	92.906	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
caes 5		barium 56	57-70	lutetium 71	hafnium 72	tantalum 73	tungsten 74	rhenium 75	osmium 76	iridium 77	platinum 78	gold 79	mercury 80	thallium 81	lead 82	bismuth 83	polonium 84	astatine 85	radon 86
_	- 1	20 SEC.						10 CASON			100 PM 100 PM			TI	100		27772	2.00	
C	S	Ba	*	Lu	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	- 11	Pb	Bi	Po	At	Rn
132		137.33		174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]
franc		radium 88	89-102	lawrencium 103	rutherfordium 104	dubnium 105	seaborgium 106	bohrlum 107	hassium 108	meitnerium 109	ununnilium 110	unununium 111	ununbium 112		ununquadium 114				
			* *	200000					Hs						377755				
F		Ra	^ ^	Lr	Rf	Db	Sg	Bh	113	Mt	Oun	Uuu	oub		Uuq				

*Lanthanide series

* * Actinide series

	57	58	59	60	61	62	63	64	65	66	67	68	69	70
,	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Standard Reduction Potentials in Aqueous Solution at 25⁰C

Reduction Half-Reaction			E° (V)
$F_2(g) + 2 e^-$	→	2 F ⁻ (aq)	+2.87
$H_2O_2(aq) + 2 H_3O^+(aq) + 2 e^-$	\rightarrow	4 H ₂ O(ℓ)	+1.77
$PbO_2(s) + SO_4^{2-}(aq) + 4 H_3O^+(aq) + 2 e^{-}$	- →	$PbSO_4(s) + 6 H_2O(\ell)$	+1.685
$MnO_4^-(aq) + 8 H_3O^+(aq) + 5 e^-$	\rightarrow	$Mn^{2+}(aq) + 12 H_2O(\ell)$	+1.52
$Au^{3+}(aq) + 3 e^{-}$	\rightarrow	Au(s)	+1.50
$Cl_2(g) + 2 e^-$	\rightarrow	2 Cl ⁻ (aq)	+1.360
$\text{Cr}_2\text{O}_7^{2-}(\text{aq}) + 14 \text{ H}_3\text{O}^+(\text{aq}) + 6 \text{ e}^-$	\rightarrow	$2 \text{ Cr}^{3+}(\text{aq}) + 21 \text{ H}_2\text{O}(\ell)$	+1.33
$O_2(g) + 4 H_3O^+(aq) + 4 e^-$	\rightarrow	6 H ₂ O(ℓ)	+1.229
$Br_2(\ell) + 2 e^-$	\rightarrow	2 Br ⁻ (aq)	+1.08
$NO_3^-(aq) + 4 H_3O^+(aq) + 3 e^-$	\rightarrow	$NO(g) + 6 H_2O(\ell)$	+0.96
$OCl^{-}(aq) + H_2O(\ell) + 2 e^{-}$	\rightarrow	$Cl^{-}(aq) + 2 OH^{-}(aq)$	+0.89
$Hg^{2+}(aq) + 2 e^{-}$	\rightarrow	$Hg(\ell)$	+0.855
$Ag^+(aq) + e^-$	\rightarrow	Ag(s)	+0.80
$Hg_2^{2+}(aq) + 2 e^-$	\rightarrow	2 Hg(ℓ)	+0.789
$Fe^{3+}(aq) + e^{-}$	\rightarrow	$Fe^{2+}(aq)$	+0.771
$I_2(s) + 2 e^-$	\rightarrow	2 I ⁻ (aq)	+0.535
$O_2(g) + 2 H_2O(\ell) + 4 e^-$	\rightarrow	4 OH ⁻ (aq)	+0.40
$Cu^{2+}(aq) + 2 e^{-}$	\rightarrow	Cu(s)	+0.337
$Sn^{4+}(aq) + 2 e^{-}$	\rightarrow	Sn ²⁺ (aq)	+0.15
$2 H_3O^+(aq) + 2 e^-$	>	$H_2(g) + 2 H_2O(\ell)$	0.00
$Sn^{2+}(aq) + 2 e^{-}$	\rightarrow	Sn(s)	-0.14
$Ni^{2+}(aq) + 2 e^{-}$	\rightarrow	Ni(s)	-0.25
$V^{3+}(aq) + e^{-}$	\rightarrow	$V^{2+}(aq)$	-0.255
$PbSO_4(s) + 2 e^-$	\rightarrow	$Pb(s) + SO_4^{2-}(aq)$	-0.356
$Cd^{2+}(aq) + 2 e^{-}$	\rightarrow	Cd(s)	-0.40
$Fe^{2+}(aq) + 2 e^{-}$	\rightarrow	Fe(s)	-0.44
$Zn^{2+}(aq) + 2 e^{-}$	\rightarrow	Zn(s)	-0.763
$2 H_2O(\ell) + 2 e^-$	\rightarrow	$H_2(g) + 2 OH^-(aq)$	-0.8277
$Al^{3+}(aq) + 3 e^{-}$		Al(s)	-1.66
$Mg^{2+}(aq) + 2 e^{-}$	\rightarrow	Mg(s)	-2.37
$Na^+(aq) + e^-$		Na(s)	-2.714
$K^+(aq) + e^-$		K(s)	-2.925
$Li^+(aq) + e^-$	\rightarrow	Li(s)	-3.045

Multiple-Choice Questions.

1. Nitric acid is an important inorganic acid. A major industrial method for producing nitric acid is through the multi-step Ostwald process. The first step of the process involves heating ammonia, in the following unbalanced chemical equation:

$$--NH_3 + --O_2 \rightarrow --NO + --H_2O.$$

What is the sum of the coefficients when the equation is balanced with the smallest integer values?

(A) 7 **(B)** 14 **(C)** 19 **(D)** 38

2. Which of the following statement(s) is/are true?

I. Esterification of carboxylic acids produces the hydroxyl functional group

II. Esterification of alcohols produces the carbonyl functional group

III. Esterification to yield alcohols produces the carboxyl functional group

(A) I only (B) I and II only (C) II and III only (D) I, II, and III

3. In an experiment I was able to produce liquid oxygen in a test tube. Using test tube clamps, I poured the oxygen between 2 poles of a magnet. Instead of seeping through, some of the liquid oxygen was caught in between the poles of the magnet. What property of O₂ best explains this phenomenon?

(A) O_2 molecules are polar

(B) O₂ molecules are paramagnetic

(C) O_2 molecules bind strongly with magnets

(D) O_2 molecules are diamagnetic

4. Fill in the missing particle:

$$\alpha + {}^{197}_{79}\mathrm{Au} \rightarrow ? + \mathrm{D},$$

where D is a Deuterium nucleus.

where B is a Beaterfall flactous

(A) $^{198}_{79}$ Au (B) $^{198}_{80}$ Hg (C) $^{199}_{80}$ Hg (D) $^{200}_{80}$ Hg

5. Which reaction involves an increase in entropy?

(A) $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$

(B) $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$

(C) $C(s) + O_2(g) \rightarrow CO_2(g)$

(D) $H_2(g) + \frac{1}{2}O_2(g) \to H_2O(l)$

- 6. X-rays of wavelength 154 fm strike an aluminum crystal. The rays are reflected at an angle of 19.3 degrees. Calculate the minimal spacing between the planes of the lattice of aluminum atoms responsible for this angle of reflection.
 - (A) 108 fm
- **(B)** 233 fm
- (C) 324 fm
- **(D)** 466 fm
- 7. The molecular shape of PO_4^{-3} can best be described as
 - (A) bent
- (B) tetrahedral
- (C) trigonal bipyramidal
- (D) trigonal pyramidal

8. Consider the equilibrium equation

$$A(g) + 3B(g) \rightleftharpoons C(g) + D(g)$$

that is completely balanced and A, B, C, and D are gaseous compounds or elements. The reaction is exothermic, with $\Delta H = -201.3\,\mathrm{kJ/mol}$. Consider the following changes on the reaction.

- I. Increasing the concentration of B
- II. Decreasing the concentration of D
- III. Decreasing the temperature of the surroundings

Which of the above changes will make the equilibrium state tend towards the same direction (forwards / backwards) as increasing the pressure on the system?

- (A) I only
- (B) I and II only
- (C) I, II, and III
- (D) None
- 9. One way of producing NO_2 is by the decomposition of dinitrogen pentoxide. The equation for this reaction is

$$2N_2O_5 \rightarrow 4NO_2 + O_2$$
.

The decomposition of N_2O_5 is a first order reaction with rate constant $5.1 \times 10^{-4} \, \mathrm{s}^{-1}$ at 45 degrees celsius. If the initial concentration of N_2O_5 is 0.50 M, what is its concentration after 6.4 minutes?

- **(A)** 0.032
- **(B)** 0.187
- **(C)** 0.338
- **(D)** 0.442

10. Aniline reacts, in presence of Br₂/CCl₄ to produce 2,4,6-tribromoaniline, a white precipitate. Consider a specimen of aniline of volume 20 mL, which reacted with 50 mL of a Bromine solution to produce 3.3 mg of the white precipitate. If x is the concentration of the aniline solution in Molar, and y is the concentration of the Bromine solution in Molar, then

```
(A) x = 5 \times 10^{-6}, y = 6 \times 10^{-6}
```

(B)
$$x = 10^{-5}, y = 6 \times 10^{-6}$$

(C)
$$x = 5 \times 10^{-4}, y = 6 \times 10^{-4}$$

(D)
$$x = 10^{-5}, y = 6 \times 10^{-4}$$

11. The pK_w of water at 50° C is 13.26. What is the pH of a $1.00 \cdot 10^{-6}$ M Ba(OH)₂ solution at this temperature?

- **(A)** 7.26
- **(B)** 7.56
- **(C)** 8.00
- **(D)** 8.30

12. How many different electronic states are possible for a given principal quantum number, n?

- **(A)** *n*
- **(B)** 2n
- (C) n^2 (D) $2n^2$

13. Which of the following species exists in the most stereoisomeric forms?

- (A) [Pt(NH₃)₄ClBr]⁺ (C) [Pt(NH₃)₄Cl₂]⁺
- **(B)** $Pt(NH_3)_3Cl_2Br$
- (**D**) $[Pt(NH_3)_2ClBr]^+$

14. Which of the following reactions produces o-nitro aniline as the major product in a good yield and in an efficient manner?

- (A) $PhNH_2 + HNO_3 + H_2SO_4 \xrightarrow{0-5^{\circ}C}$? (B) $PhNH_2 \xrightarrow{Ac_2O}$? $\xrightarrow{HNO_3/H_2SO_4}$? $\xrightarrow{H_2O}$?
- (C) $PhNO_2 + HNO_3 + H_2SO_4 \xrightarrow{0-5^{\circ}C}$? $\xrightarrow{Fe/HCl}$? (D) $PhNO_2 + HNO_3 + H_2SO_4 \xrightarrow{0-5^{\circ}C}$? $\xrightarrow{Cu/HBr}$?

15. Which of the following organic transformations cannot happen in basic solution?

- (A) Alkene Hydration
- (B) Amide Hydrolysis
- (C) Epoxide ring-opening
- (**D**) Aldol Condensation

Free-response.

Problem 1 (Producing Hydrogen). About 75% of hydrogen is produced by the steam-reforming process. In this process, a mixture of methane and water is reacted at high temperatures to form carbon monoxide and hydrogen. This reaction is carried out in two stages. In the primary stage, a mixture of steam and methane at about 30 atm is heated over a nickel catalyst at 800° C to produce hydrogen and carbon monoxide. The secondary stage is carried out at approximately 1000° C to convert the remaining methane to hydrogen. The ΔH value in the primary reaction is 206 kJ, while the ΔH value in the secondary reaction is 35.7 kJ.

- (a) Write the balanced equation for the primary and secondary stage using the smallest whole coefficients (You do not need to indicate their physical states)
- (b) Under what conditions would favor the formation of products in both the primary and secondary stage? (Think in terms of temperature and pressure)
- (c) The equilibrium constant (K_c) for the primary stage is approximately 18 at 800° C. Calculate K_p for the reaction.
- (d) Given the partial pressures of methane and steam were both 20 atm at the start, use your answer in (c) to find what the pressure of CH₄ is at equilibrium.

Note: If your answer in part c is incorrect however your answer for part d using your wrong answer from part c is "correct," then you may still receive full credit for part (d).

Problem 2 (Equilibrium Dissociation of CO_2). When iron (II) oxide, FeO, is heated at 1000 K, the equilibrium oxygen pressure over the compound is $4.10 \cdot 10^{-16}$ Pa.

(a) Write the overall reaction that occurs. Calculate the equilibrium constant (K_p) and ΔG° for this reaction at 1000 K.

Now, an equilibrium mixture of $\rm CO_2$ and $\rm CO$ gases over FeO at 1000 K and atmospheric pressure contains 60% CO by moles.

- (b) Write the overall reaction occurring. Calculate the equilibrium constant of this process (K_p) .
- (c) What is K_d for the dissociation of CO_2 to oxygen and carbon monoxide under these conditions (1000 K, 1 atm)? Assume 1 mole of O_2 is produced.
- (d) Estimate the degree of dissociation of CO₂ to oxygen and carbon monoxide under these conditions.

- (e) What is the degree of dissociation of CO₂ when the pressure is increased to 10 atm?
- (f) Is it possible to calculate the dissociation constant at 600 K and 1 atm? If yes, calculate the value. If not, indicate what additional data is needed.

Problem 3 (Solution of Benzoic Acid).

- (a) A solution of 0.15 moles of benzoic acid (PhCOOH) is treated with 0.01 moles of NaOH in $500\,\mathrm{mL}$ of water. Write the net ionic equation that occurs.
- (b) The pK_a of benzoic acid is 4.2. Determine the concentrations of each of the following species in solution once equilibrium is established in part (a):

 $(i)[Na^+],$ (ii)[PhCOOH], $(iii)[PhCOO^-],$ $(iv)[OH^-].$

- (c) Calculate the pH after an additional 0.04 moles of NaOH are added. Assume volume change is negligible.
- (d) You hope to buffer the solution at pH = 9.0. How much additional NaOH (in moles) needs to be added to achieve this pH? Will it be an effective buffer? Explain.
- (e) A different buffered solution is made by adding a small amount of NaOH to a mixture of acetic acid ($pK_a = 4.8$) and benzoic acid. The final pH measured by calomel electrode is 4.60. Determine the ratios of [PhCOOH] to [PhCOO⁻] and [AcOH] to [AcO⁻] in the solution.
